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ABSTRACT 

This report  concerns a procedure to character ize  the 

single highest response of a single dezree-of-freedom 

system to a burs t  of amplitude modulated random noise. 

The response maxima results a r e  obtainea by a digital 

simulation study and displayed as normalized ramilies 

of curves in probability. 

probabilistic shock spectra;  they have application in the 

design of structural  systems in nonstationary random 

environments such as gusts, turbulence and earthquakes. 

Such curves a r e  identified a s  
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1. INTRODUCTION 

Some response character is t ics  of unimodal mechanical 

systems to  finite duration deterministic inputs may be categorized 

by means of shock spectra.  

response maxima of a single degree of f reedom sys tem to  para-  

meters  of both the system and the excitation. Such plots often a r e  

displayed as a family of curves  whereby a normalized response is 

plotted a s  a function of the t ime duration of the input and the natural  

period of the system. 

Shock spectra  a r e  plots which relate  

F o r  a nonstationary random input such a s  an amplitude 

modulated burst  of random noise (a type of shock pulse), it frequently 

is important in  design t o  predict  a response maximum. 

s t r ic t  our attention t o  a single degree of f reedom mechanical system, 

it is consistent to identify a s  probabilistic shock spectra  those plots 

which relate  response maxima and exceedance probability with the 

system and excitation parameters .  

t ic  shock spec t ra  for amplitude modulated, broadband, Gaussian 

white noise of finite duration. 

If we re - 

This study considers probabilis- 

1 



2 .  PRa.BL2M DEFINITION 

The equation of motion for  the sys tem of Figure 1 is given by 

where m is the mass, c the viscous damping coefficient, k the 

linear spring constant and y the displacement f rom the s ta t ic  

equilibrium position. Since 

C 2gw = -  
n m  

C 

C 

& = -  1 

C 

the system equation of motion may be written as 

0. 0 2  1 
y t 2 5 w  y t w y = - f ( t )  n n m ( 3 )  

Let 11s assume the system is initially a t  res t .  

2 



Figure 1. Single Degree of Freedom Mechanical System 

The input force excitation is given by 

0 where e(t)  is a well-defined envelope function of time duration t 

and n(t) is stationary, Gaussian, broadband white noise with zero 

mean. 

a bursc of amplitude modulated white noise. 

dict the maximum response of the system to the nonstationary ex- 

citation f ( t )  . 

This product defines a sample function of the process  f ( t )  as 

Our problem is to p re -  

3 



3. GENERAL REMARKS 

The problem of concern here  i s  associated in the l i terature  with 

random process  problems dealing with ba r r i e r  and threshold level 

crossings,  f i r s t  exceedances, and single highest peak (SHP) excursions.  

In theory,  solutions can be determined when y( t )  is a Markov process .  

In pract ice ,  solutions become tractable when y ( t )  is a one-dimensional 

Markov process  functionally dependent upon a single random variable. 

Our mechanical sys tem is defined by a second-order differential 

equation in time with constant coefficients. 

ma; be expressed in t e r m s  of a two-dimensional Markov process .  P r a c -  

tically, however, in order  to determine level crossing solutions. we 

seek methods which convert the response process  t o  a Markov process  

of one dimens ion. 

tions since the conversion usually is not exact. 

The response y( t )  to f ( t )  

Such methods generally provide approximate solu- 

Rosenblueth and Bustamente (2 11 accomplished this conversion by 

using a variable Substitution, and obtained bounding solutions by solving 

a boundary-value problem. 

(1 71 calculated s imilar  resul ts  using Fokker -Planck equations. 

(121 defined a rariable substitution, used approximations for the t rans i -  

tion probability, and sabsequently made the conversion to a one-dimen- 

sional process.  He then calculated bounding solutions as well a s  the 

mean and mean square for t imes to a first exceedance. 

diramani and Cook [91 obtained threshold value solutions by solving 

numerically the Smoluchowski integral equation. 

Caiighey and Gray (63 in addition to Mark 

Gray 

CraiAall, Chan- 

Still other techniques applicable to random process  lei 

Shinozuka and Yao [22] developed bounds apy;. 

- rossings 

-)le to  

A renewal process  approach was used by 

a r e  available. 

any f i rs t -passage problem. 

Rice and Beer [IS]. A se r i e s  solution approach was considered by Rice 
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[191, improved upon by Lonbet-Higgins [15], and developed further by 
Roberts [201. 
bounds to  the first passage density function. Both single and two-sided 

threshold levels were formulF-ted. 

a r e  those t y  Srinivasan, Subramanian, and Kumaraswamy k 3 1  and Lin 

The par t ia l  sums of the s e r i e s  comprise  upper and lower 

Other works that  should be examined 

141. 
Yet another approach, very simple in concept and sufficiently accu- 

ra te  for engineering applications, is that of direct  simulation. Crandall, 

Chandiramani and Cook [91 have considered a digital simulation, a s  has 

Barnoski [ l ] ,  though to a more  limited extent. 

obtained solutions by analog simulation methods. Principally due to the 

data processing convenience of a digital computer, a digital simulation 

i s  used in this study. 

Barnoski [31 a lso  has 

5 



4. RESdLTS FOR AN INPUT OF STATIONARY 
WHITE NOISE 

Although our problem concerns a particular form oi nonstationary 

excitation, it is worthwhile to e x a m k e  first exceedance results and other 

properties of the response process when f ( t )  is bandlimited stationary 

white noise and the system response y( t )  is stationary with zero  mean. 

Accordingly, we wish to predict the single highest stationary (SHS) r e -  

sponse the system will  experience within the sampling time interval T. 

4. i RESPONSE PROPERTIES 

Before we consider the prediction of this SNS response, let us 

f i rs t  recall some pertinent properties associated with the system re- 
sponse y(t). 

excitation is wide compared with the half-power bandwidth of the system, 

the response appears a s  Figure 2. 

Since the zero crossings are very nezrly equally spaced, such motion 

sometirr,es is described as a harmonic motion of frequency f 

randomly varying amplitude and phase. 

When the damping is small  and the bandwidth of the input 

This is called narrowband noise. 

with n 

The mean square stationary response is given by 

where G (w) is the response spectral  density and w is the upper 

cutoff frequency of the input excitation. 
Y C 
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Amplitude 

t 

Figure 2. Stationary Response of a Lightly Damped Mechanical 
Oscillator to Broadband White Noise 

Now 

where H(o)  is the system frequency response function 

1 1 
H(w) = - 

w 
2 m u  

w n 
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and G (w) is the spectral  density of the input excitation. 

limited white noise, G (0) is the constant G By substituting 

Eq. (6) into ( 5 )  and carrying out the integration, 

F o r  band- f 

f 0' 

w TTQ Go 

2m w 
I 2 C 2 

Y 2 3 n  
n 

o = G o l o  (H(w)[ dw = 

where 

1 Q = -  
25 

With R =  w / w  the dimensionless t e r m  I is 
c n' n 

and ranges in value between zero and one as shown in Figure 3. 

These curves point out that H(w), for small damping values, actsasa 

highly selective bandpass fi l ter  and admits frequency components 

approximately equal to and centered about f . 
uc/un >> 1 so that 

Fo r  broadband ncise, n 

2 *QG0 

2 3  2m wn 
r =  

a 
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I SJI 
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F3r  a statio-iary process ,  the expected number of crossing3 pe r  

unit t ime at the level y = a with positive slope is given by [ lo]  

nt a = /om ?p(aJ?) d$ 

Since the joint density function p(a, i )  for a Gaussian process  with 

zero  mean is 

p(a, +\ = -- 1 exp [: - - 2 a u  u. 
Y Y  

then 

t 
0 

where n 

positive slope and p is the ratio 

is the expected number of ze ro  crossings per  second with 

0 

a 

Y 
p = -  
o u  

+ 
0 Now n is expressed by n+-l[;;l 112 

0 2a 

=y J 
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2 
where the mean square velocity response 0 .  is 

Y 

0 

6. = Go Io 0' IH(w)I2 do 
Y 

Upon integration, 

HQ Go 

2 Y 2m w 
n I1 2 

6. = 

n 

(17) 

where 

with a = w /w . The t e r m  I1 

a s  shown in Figure 4. For  broadband noise, I1 = 1 and 

ranges in value between zero and one 
c n  n 

n 

s o  that 
? 

lrQ Go 

Y 2m on 

2 
2 T. = 

t 
O n  n --"f 

11 
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Analogous in form to Eq. (16), the expected number of response 

maxima per  unit t ime is given by [8] 

where 

where 

Upon integration, 

N(Ymax’ 

n Q G o  wn 

2m n 111 
2 

Y 2 
m u  = 

2 
I11 n r r  = =+ 2 ( 1  - 25 ) IIn - I n 

Plots of I11 

I11 

becomes unbounded a s  w / W  

a r e  given by Crandall [8] and Lyon [ 1 6 ] .  

a r e  shown a s  Figure 5. For  increasing values of w c /w n ’  n 
increases  in value to magnitudes much grea te r  than one and n 

+ 00. Discussions concerning this behavior 
c n  

13 
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m 
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Since the input is Gaussian and the system is linear, the 

probability density function for  the process  y(t) likewise is Gaussian. 

T h e  density function for the envelope of the response is Rayleigh. 

density function for  the response maxima (that is, the ?lumber of 

individual peaks) is given by [ 8, 19 ] 

The 

w h e r e  

t 
0 n 

r =  
(ym ax) 

The functions f( ) and F( ) a r e  the tabulated normal functions 

f(x) = 1 exp[ + x'] 
[ 2 4  l 2  

15 



N For a narrowband process,  r - 1 and p(p,) reduces to  the Rayleigh 

density function 

This is noted to be the same as the uensity function for the envelope 

of the response process.  As r - 0, p(p,) reduces to  the Gaussian 

density function 

which is that of the process y(t). 

4 . 2  SINGLE HIGHEST STATIONARY RESPONSE 

To predict the SHS response we seek an expression for  the proba- 

is l e s s  than o r  equal to  the level 6 ,  bility that the maximum value of 

within the time interval T. Such is noted symbolically by PT(1Bf - < bo). 
Let us r e s t r i c t  our attention to  relatively high ba r r i e r  levels, say 

bo, 2. 5; we assume each exceedance at  the level y't) = a is a statis- 
tically independent event and that the elapsed time to  the first exceedance 

te is a random variable with the Poisson probability density. t 

+Although the Poisson assumption is imprecise,  it simplifies enormously 
the mathematics associated with the problem as well as provides 
servLtive bounds [ lo] .  

con- 

16 



Now the probability of y[t) exceeding the level a within the intervel 

O c t  < T i s  
e -  - 

which, for the Poisson density and small  probability values, reduces 

to  

For the two-sided ba r r i e r ,  PT(IPI  > Po) 2 PT(B > 8,) S O  +hat 

Upon substitution of Eq. (1  3) ,  

17 



and 

Alternatively, by means of either "equivalent" RC se r i e s  circuits 

and Fokker-Dlanck solutions [ 171 o r  by a diffusion of joint probability 

in the plhase plane [ 9 1, 

A 
PT( p 5 pO)2!Ad exp TQ] , T > T c o r r  (37) 

where the "hat" over  the P implies an estimate of P-@ < Po). The te rm 

4 defines a constant dependent upon the initial conditions, a is a 

parameter  dependent upon both Q and the threshoid level 8 

Tcorr  
a negligible value. Foi- threshold levels where p > 2. 5, T > T 

can be ignored as a restr ic t ion ana A 

Plots of a 

p for both p = P and 0 = lpl. 

1 -  

0 0 
and 

0 '  
is the time lapse for the autocorrelation function to decay to 

0- c o r r  
can be assumed equal to unity. 0 

versus Q a r e  shown in Figure 6 a s  families of curves in  
t 

0 

0 
Still another approach is by a n  active analog simalation [ 3 1. 

The mechanical system- is modeled by a network of operational ampli- 

f ie rs  with the input supplied by a noise generator. The single highest 

system response f rom many trials a r e  collected, processed, then used 

to establish estimates for P (Igl 5 Po). 
a r e  shown in Figures 7 and 8 as families of curves in  Q for f3 

f T/Q.  Solutions a r e  displayed in  Tigure 7 for P T ( \PI  - 0  < ) = 0.50 

A 
Such empirical  solutions T 

versus 0 A 

n 
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2 
10 

f T  
n 
Q 
- 

10 

1 

2 3 4 

80 c 

Figure 7 .  Response Maxima of a Single Degree-of-Freedom System 
to Stationary White Noise 

5 
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l o3  

1 o2 

f T  
n 
Q 
- 

10 

1 

Figure 8 .  Response Maxima of a Single Degree-of-1 :edom 
System to Stationary White Noise 
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(this percentile happens to correspond to the average peak value) and 

in Figure 8 for P T I  (IB' 1 -  < 8,)  = 0. 95. 

tions to the SHS problem for Gaussian, stationary, narrowband noise. 

The analog results can be compared more  conveniently with the ana- 

lytical expressiocs by rewriting Eqs. (36)  and (37 )  in the form 

Now Eqs. (36)  and (37)  and Figures 7 and 8 all constitute solu- 

Such a comparison shows close agreement between the analog data 

and Eq. (37). The analog data also support Eq. (36), but show close 

agreement only for the la rger  values of fnT. 

practical  ramifications of this behavior. 

Let us consider the 

Equation (36)  is a bounding solution, and it departs somewhat 

f rom the other solutions for a lesser  number of response cycles, say 
f n  T < 1000. Since the SHS response Is influenced by Q for the 

smaller values of i T, this departure logically could be predicted 

since Eq. (36)  is independent of Q. Now for the lar, . values of 

fnT, say 10, 000, Eq. (36)  yields results approximately the same  as 

the values obtained f rom the other solutions. 
the SHS response becomes independent of Q for a large number of 
response cycles. 

n 

This behavior suggests 

22 



In summary, these solutions markedly point out the dependency 

of the single highest stationary response upon both the sampling t ime 

and an acceptable value of probability. F o r  example, F igure  8 shows 

that PO = 3 (i. e. , a peak value which i s  three t imes the stationary 

r m s  response) corresponds to P (lpI < p ) of approximately 0.95 a t  

f T /Q"  0.2 and to P ClpI < P ) of approximately 0. 50 a t  f T;Q 

Expressed in another way, such statements point out there  is a 570 

probability that a peak value will exceed ~ I J  for T 0.2 Q/f and a 5070 

probability that a peak value will exceed ~ I J  fo r  T Y 5 Q/fn .  

c lear  f rom these resul ts  that the design of s t ructure  and o r  equipment 

based upon a single exceedance c r i te r ia  in  a random environment en- 

tails  knowledge of the system, statist ical  assumptions of the environ- 

ment, an estimate of the tirr.e durati-n in the environment, and an 

acceptable probability level of design. 

to include multi-degree of f reedom structures ,  although examined 

?artially [ 2 ]  , remains a s  a future task. 

A 

T - 0  
A 

5.0. n T - 0  n 

n Y 
It is 

The extension of such resul ts  

23 



5.  NOISE BURST STUDY 

5. 1 PRELIMINARY CONSIDERATIONS 

Unfortunately, many random environments cannot be character  - 
ized a s  an input excitation of stationary, Gaussian white noise. 

ments such a s  those for gusts,  turbulence, and earthquakes can be 

represented more realist ically by 

Environ- 

where, a s  mentioned previously, e( t )  is a well defined envelope o r  

modulation function and n(t) is bandlimited, Gaussian white noise. 

This excitation is a sample function f rom a nonstationary random 

process  and can be  formed by shaping the output of a random noise 

generator with a t ime limited envelope function. A typical input f o r  

broadband white noise modulated by a rectangular s tep and the sub- 

sequent system response a r e  shown in F igure  9 .  

initially at res t ,  our  task is to predict  the maximum value of the 

response y(t) .  

With the system 

This solution is noted by PtO (\PI < Po). 
Consider the five envelope functions shown in Figure 10. 

- 
They 

a r e  classified a s  rectangular, half -sine and sawtooth. The notation 

A T l  r e f e r s  to the t ime duration of a rectangular noise burst  and 

L R M P  denotes an initial peak sawtooth, RRMP a terminal  peak saw- 

tooth, and SYMRMP a symmetr ical  sawtooth. Let u s  elect t o  formu 

late solutions fo r  the single highest response by means of a digital 

24 
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Modulation Function 

L R M P  

RRMP 

A 

K 

1 .oo 

2 . 0 0  

3 . 0 0  

3.00 

3 . 0 0  

Figure 10. Modulation Functions for the Input Noise 
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simulation and to represent  the results by ?lots similar to  F igures  7 

and 8. 

shock spectra  in a s  much as they represent  (es t imates  of) the maximum 

response of a single degree of freedom system to bu r s t s  of random 

excitation. 

We call  such single highest response solutions probabilis' c 

To adhere to the fo rma t  of Figures  7 and 8, two questions must  

be answered: 

0 What t ime duration should be used in l ieu of the 
sampling t ime interval T ?  

What r m s  response should be used in o rde r  to 
form the ratio lP l  '? 

An answer to the f i r s t  question is provided by replacing T with a 

measure of the t ime duration of the input burst .  be the 1 
t ime duration of a rectangular noise burst .  On the assumption of 

equal energy inputs (governed by the envelope functions), other 

envelope functions can be equated to  this t ime base according to 

Let A T  

1 t = K A T  
0 

where 

K =  

2 
lTEm 

rli e2(t)  dt 
J a  

For a rectangular envelope, K = 1 so that to = A T  

the other envelope functions a r e  included in Figure 10. 

Values of K for 
1 '  

27 



An answer to the second question is provided by first examining 

the factors which influence the system mean square response when 

e( t )  i s  a rectangular s tep and n(t) is correlated according to the 

function 

R (T) = Ro e -a'T' C O S  pT n 

This correlation function is suitable for the output of white noise 

generators ,sed in the laboratory. 

lation decay constant and p a harmonic irequency. 

square response may be expressed by [ 41 

The quantity a defines a c o r r e -  

The sys tem mean 

1 2 F. T - X T t R3T3 - X3T4 
E[y ( t ) ]  = > [ 1 1  1 2  m 

where 

T = - e  -2bt sin2 a t  2 (43) 

b 2 - a z t p  sid at 
- a  

2 T = l t e  
a 

b t a  

3 

cos at cos p t  t - sin at cos p t  t e sin a t  s i n  p t  a a 
- (a tb) t  - 2 e  

T 4 = 2 b - 2 "  (5 sin2 a t )  t e-(a+b)t  ( e  a s in  at cos p t  

- cos at  sin pt - b+a, sin at sin p t  a 

28 



The remaining t e rms  a r e  written a s  

I (p2 t a2 t 2) 
R: = 1 -  a - 2 

a 

1 I 
I R = R e  

3 

and the complex numbers a s  

s = a t i b  
1 

s = - - I  f i b  2 

s = p t j c  3 

s4 = - p  t ia 

2 9  



with the system properties 

1 / 2  
a = w  n [ 1 - , 2 ]  

b = & w  
n 

F rom the plots i n  [ 4 1, i t  is noted that the mean square response 

may exceed i ts  stationary value for various combinations of a, p , T ,  

and Q . Such i s  not convenient for the )pi normalization. n 
For  a white noise input, the mean square response is determined 

from Eq. (42) by 

l i m  E[y2(t)] 
Q + O  

(47) 

t 
which reduces to 

I i - b sin 2at + - 2b2 sin2 at)] (48) 
2 

r r G ~  [ 1 - e-‘’‘( a 
a 

2 
E[Y (t) = ’  2 3 

45m w n 

+ This expression agrees  identiczl’:. with that of Caughey and Stumpf 
171 . A reievant discussion is by Janssen and Lambert  [13] . 
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Figure 11 depicts the behavior of this equation. 

normalized curves in Q is shown where f t is interpreted a s  the 

number of response cycles. Fo r  damped systems,  the mean square 

response is seen to  approach asymptotically (but does not exceed) 

the limiting value 

A family of 

rl 

2 2 = =0 
lim E[y ( t ) ]  = Q 

t-a, 45m w 
2 3  

n 

= 

which is the stationary mean square response of the system to an input 

of broadband white noise. Since the u values a r e  not exceedzd, their  

u se  a s  normalization constants for  101 is suitable. 

plots of Figure 11 may be used to  a s s e s s  the time lapse (or number 

of response cycles) for unimodal mechanical systems t o  attain nea r  

stationarity in the i r  response. 

2 
7 

In addition, the 

5.2 COMPUTER SIMULATION 

The block diagram for the digital simulation on the 1108 Univac 

computer is shown as Figure 12. 

were  used to represent  the mechanical system. 

generator consisted of a computer subroutine which produced Gaussian 

white noise with zero  mean and unit variance. 

were  those of Figure 10 where 

Digital filtering techniques [l 13 

The random noise 

The envelope functions 

AT = A T  = A T 5 = 3 A T  = t o  3 4 1 sawtooth: 

(49) 
half - sine: AT 2 = 2 A T  1 = t o  

32 
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By discretizing the t ime variable in the fo rm 

to = X A t  , (50) 

the input excitation to the single tuned digital filter for each envelope 

function is 

f(hAt) e(AAt) n(AAt) 

The fi l ter  output is defined by 

y(AAt) = C f(AAt) + hl  f([A - 13 At) + h2f([X - 21 At )  

where 

w = 2 s f  , f = 1 0 0 H ~  n n n 

For each combination of f t /a,  three hundred runs were made. n O  
F o r  each run, the data were sampled and the positive and negative response 

maxima (t peaks) were noted. After each se t  of th ree  hundred runs, - 

34 



the  data were normalized by the white noise stationary rms response 

of the sys tem and arranged sequentially according to order  of magni- 

tude. The sample mean and variance were calculated by 

+ 1 + = - C  y max 
k = l  k 

'max 'max k= 1 t N - 1  
2 s = -  

- N - l  
2 s = -  

k= 1 

+ 
max 

where the sample s ize  N = 300. 

and y also were listed. Finally, the sample probability density 

functions p ( Y  

estimates made by 

The la rges t  values for both y 
- 
rnax 

A +  A -  
and p (yrnax) were  determined and percentile max 

35 



where the probability P var ies  over the range 0 - -  < P < 1. 
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6 .  NOISE BURST RESULTS 

The resu l t s  of the digital simulation study a r e  shownas F igures  
A 

13 through 18. All a r e  plots of P (IS( < Po) for  either Q = 5 o r  Q = 50 

where the exceedance level p is plotted ve r sus  the parameter  f t /Q. 

Data a r e  shown for  the five modulation functions and the stationary r e -  

sponse of the system to white noise is included for  purposes of com- 

parison. 

to - 
0 nO 

Figures  13 and 14 a r e  plots of the average response maxima for  

Q = 5 and Q = 50, respectively. The dashed curves define the var iance 

extremes of the output data. 

of y(t) for the rectangular step modulation while the lower curve  is the 

variance of y(t) fo r  the terminal  sawtooth modulation. 

to the stationary input is the response maxima corresponding to the 

fiftieth percentile, i .e. ,  PT((plz Po) = 0.50. 

That is, the upper curve is the var iance 

The response 

A 

Figures  15 and 16 a r e  plots of the fiftieth percentile response 

maxima fo r  Q = 5 and Q = 50. 

ninety-fifth percentile response maxima fo r  Q = 5 and Q = 50. 

expected, due to the white noise normalization r , the nonstationary 
Y 

response values do not exceed the stationary response values. More- 

over,  they generally follow the trend of the stationary resul ts .  This 

suggests the stationary response maxima may be used a s  conservative 

bounds for  response maxima due to the modulated noise inputs. The 

degree of conservatism var ies  with the shape of the modulation func- 

tion; the greatest  deviations a r e  those for  the sawtooth functions. 

The least  deviation is for  the rectangular s tep modulation. 

Figures  17 and 18 a r e  plots of the 

As 
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Some e r r o r  is introduced into our resul ts  due to discrct iz-  

ing both the system equation of motion and the input forcing function. 

This usually can be made negligibly small; 

l e s s  than two-percent in this study. One discretization e r r o r  

that needs further discussion is the bias  e r r o r  in locating the 

t rue  peak value of y(t) .  

s tatist ical  e r r o r  associated with random data fluctuations. 

it is estimated to be 

Another e r r o r  that needs comment is the 

For  narrowband noise, le t  us  a s sume  the e r r o r  i n  detecting a 

peak value of y ( t )  is of the same order  of magnitude as that of locat- 

ing the ?eak value of a simple harmonic signal which has been digitally 

sampled. By assuming a uniformly distributed phase angle, the bias 

e r r o r  E r  [Y 
4. 

] * hen Y = A cos u ( t  + t ') is given byT pea?- 0 

s in  (wo a t / Z )  
] = A  

Er[Ypeak (wo A t / 2 )  

where A t  i s  the t ime increment between two adjacent points of the 

discretized signal. Figure 19 shows the effect of Eq. (56). 

0 

Now with 

A t  = 0. 0005 sec  arid f = 100 Hz. E r  [Ypeak] is l e s s  than one percent. 

Tolerance and/or  confidence limits may be used to assess the 

statist ical  variability of the data. Such l imits ,  however, are ex- 

t remely  difficult to formulate since the t rue  distributions of 

and y a r e  not available. Although nonparametric as 
' m a  max 
well as parametr ic  statist ical  methods [ 5 ] can be used, the resultant 

l imits  generally a r e  much too wide for practical  application. Perhaps  the 

+ - 

.': 
Personal  communication with R. K. Otnes ( see  Reference 11). 
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simplest approach is  to incrzase substantially the number of data points, 

then use x2 goodness-of-fit t es t s .  Since we a r e  interested pr imari ly  in 

the scat ter  of extremal data where Pto(l/?(--< 8,) > 9070, an all-digital 

aFproach (as used he re )  generally will prove expensive as a large amount 

of computzr time is required to produce such extremals.  

attractive procedure for acquiring and processing extremal data is by 
means of a hybric! computer. 

ulate the physical system 

(since running t ime comparatively is inexpensive); the digital computer 

then used to perform the data analysis. 

A seemingly 

The analog computer can be used to sim- 
and produce the extremal response values 
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7 .  CONCLUDING REMARKS 

Probabilist ic shock spec t ra  a r e  presented for  five noise mod- 

Such spec t ra  a r e  normalized plots which charac-  ulation functions. 

t e r ize  rhe single highest response of a single degree-of-freedom 

mechanical system to  a burst  of amplitude modulated random noise. 

They a r e  functions of exceedante probability, the system natuial  

frequency and damping, the t ime duration of the burst ,  and the de- 

g ree  of correlation of the input noise. 

Probabilist ic shock spec t ra  have application in the design of 

unimodal mechanical systems in nonstationary environments where 

a single exceedance level (say, a peak s t r e s s  o r  maximum deflec- 

tion) may be used as a design criterion. Their application to dis- 

tributed s t ructural  systems appears limited to conditions whereby 

the system response may be assumed to consist  of a summation 

.if independent contributions f rom each of the normal  modes. 

Several investigations seem warranted at this point. One is  

to investigate more  fully the condition fo r  which the nonstationary 

mean square response exceeds its stationary o r  steady s ta te  value. 

A second is  to examine the effect of independent single degree-of- 

freedom si-stems with closely spaced natural  frequencies on the 

response maxima statist ics.  

typical spatial correlation functions on the t ime varying mean 

square response of a distributed system. 

A third is to study the effect of 
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